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Abstract. In the graph partitioning problem, as in other NP-hard problems, the problem of proving
the existence of a cut of given size is easy and can be accomplished by exhibiting a solution with the
correct value. On the other hand proving the non-existence of a cut better than a given value is very
difficult. We consider the problem of maximizing a quadratic function x"Qx where Q is an n X n real
symmetric matrix with x an n-dimensional vector constrained to be an element of {—1,1}". We had
proposed a technique for obtaining upper bounds on solutions to the problem using a continuous
approach in [4]. In this paper, we extend this method by using techniques of differential geometry.
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0. Outline

In the first section we introduce the quadratic optimization problem and give a
motivation for the concepts underlying the development of the interior point
approach for solving the problem. In the second section, we transform the
problem into a continuous optimization problem. We also formulate a Rieman-
nian metric defined on the feasible region of the optimization problem. We then
describe a method of generating a sequence of decreasing upper bounds for the
quadratic maximization problem. Conclusions and directions for future work are
presented in the last section.

1. Introduction
Let S be the set of n-dimensional vectors defined as follows
S={x=(xy,..., %) |x,€{-1,1}, i=1,...,n}.

Consider the quadratic optimization problem

max  f(x)
s.t. x€S
where f(x) =x"Qx, Q€ R is a symmetric matrix . (1)

Let f_,, denote the maximum value of f(x) in problem (1).
Since Q is a real symmetric matrix all its eigenvalues are real. If all the
eigenvalues are negative the problem is easy [3], [11]. Otherwise problem (1) is
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NP-hard [2] and obtaining an upper bound on f, . by finding the optimum
solution to (1) is difficult. We consider only the NP-hard case in which at least
one eigenvalue of Q is positive [12] and we shall present in this paper a technique
for finding a good upper bound on f,_,,.

Evaluating f(x) at any x€ S gives us a lower bound on the solution to this
problem. However, to show that the optimal value of f(x) in S, can be no more
than some real number p using a combinatorial approach, one may have to
evaluate f(x) for all x in S. In contrast we present here an efficient technique
based on the interior point approach, for obtaining upper bounds on solutions to
this maximization problem.

The main concept in an interior point approach to such problems is to embed
the discrete set (§ in the current case) in a continuous set 7 where SC 7.
Maximum of a function f(x) over T gives an upper bound on f(x) in §. We would
like to choose set 7 so that not only can the maximum be found in a computation-
ally efficient manner but also the bound obtained would be as good as possible.

A commonly used approach is to choose the continuous set to be the box X
defined as follows

X={x€eR"|~-1<sx,<1, i=1,...,n}.

But optimizing a quadratic function f(x) over X is still NP-hard [12] so instead
we enclose the box in a ball B where

B={xeR"|x"x<n}.

For maximizing f(x) on B, we need to just find the maximum eigenvalue A, of
Q. Then since

x Ox
T
X X

x'Ox<nir,,. , VXEB

<A ¥x€E€ R" — {8},

max ?

and therefore we get nA_,, to be an upper bound on f,,,.

Instead of the ball B we may choose any ellipsoid E enclosing the box X and
still retain the computational ease of the resulting maximization problem. In this
paper we shall limit ourselves to ellipsoids E(w) whose axes are along the
coordinate axes. A technique for ellipsoids with some other given set of axes can

be derived along similar lines.

LetU{w—(wl,wz,... w,)ER" E =0, i—l...,n},
and E(w)={x€R"|x"Wx=<1 whereW dlag(w) weU}.

It can easily be verified that the ellipsoid E encloses the box X.
If A is the maximum eigenvalue of the matrix W™'?QW ™2 then
xTQx y W—~1/2QW—'1/2

max = =A 2
= xTwx e vy @
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implying
x'Ox<A, VxEEMW).

This gives us a simple technique for maximizing f(x) on E(w).

Since E(w) contains the set S, A is an upper bound on f,,,. We also note that A
is a function of the weights w. This suggests that the value of A may be reducible
by suitably modifying the weights w. Hence to obtain a better bound on f,, , we
need to find the right values for the weights w that minimize A. In the following
section we shall use this idea to construct a method for computing better bounds
on

max*

2. Interior Point Approach to the Problem

Our interior point approach to the problem is an iterative method which can be
roughly described as follows. We start with some weights w® =

(W), wy,...,w ) EU and iteratively modify them, obtaining in the process a
sequence of ellipsoids E, . . ., E® such that if ) is maximum of f(x) over E)
then

p D> D> @

The condition that wx is the maximum of f(x) over E(w) can be written as

T
x Ox n
spu, VxER"-{0},
T Wx M { }
which can be rephrased as
x'(uW=Q)x=0, VxeR" (3)

implying that the matrix u W — Q is positive semidefinite.
The problem to be solved can now be posed as

min W
s.t. welU
x(uW—-0)x=0, VxER". (4)

It can be proved that the level sets of the above optimization problem are convex.
We shall now modify the problem space to simplify the minimization problem.

Z¢=@.
i=1

LEMMA 1. Let w& U and d €V, then given

Let V={d=(d1, dy,...,d,)ER"

W = diag(w) and D = diag(d),
x'(Q - D)x
x’ Wx
>x'0Ox<0, VxES. (5)

su, VxeR"-{0}
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Proof. Since ¥x€ §, x,€{~1,1},i=1,...,n, we have
xTWx =2, w;=1
and since d € V we have
x'Dx=2,d,=0.
Hence
x'Ox=<p, Vx€ES. |

This suggests that we have an additional degree of freedom in minimizing the
bound f__, on §. So we may define the optimization problem over (u,w,d)

space. But before doing so let us consider the inequality (5) which is the only
constraint that has both the w and d variables. This constraint may be rephrased

as
xX'(uW+D-Q)x=0, VxER".
Let us define forwelUandd&€V
M(p,w,d)=pW+D-0.

For any given (u,w,d), we can define (u,w',d’) where w' = te and d'=
uw+d— %e.
It is obvious that w' € U and d’ € V' and that

1
M(u,,—le,d')=%I+;LW+D—%I—Q
=M(p,w,d).

Hence it suffices to treat M as a function of only u and d, keeping w constant at
# e and varying d iteratively to reduce the upper bound u. Better still we define a
new vector z= puw+ d. We note that e’z =p and the optimization problem gets
simplified to the following

min e’z
s.t. x(Z-Q)x=0, VXER",
where Z = diag(z) . (6)

Let M = Z — Q. Tt is apparent from above, that the optimization has to be done
over a region in which M is positive semidefinite. If we were to enforce the
positive semidefiniteness condition for each x in R”, it would require an infinite
number of inequalities. The same effect can be achieved by imposing conditions
on eigenvalues of M.

We shall use the notation A, (M) to denote the ith eigenvalue of a real
symmetric matrix M. Since M is a real and symmetric matrix, it has »n real
eigenvalues A,(M), i=1,...,n. For M to be positive semi-definite, its eigen-
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values must be non-negative which give us the inequality constraints

AMY=0, i=1,...,n. (7
The optimization problem may now be finally stated as follows:

min e’z

s.t. AM)=0, i=1,...,n. (8)

RIEMANNIAN METRIC

In the projective algorithm for linear programming, the optimization is done over
a simplex and at each iteration of the method, we bring the current interior point
to the center of the simplex by making a suitable projective transformation.

We want to adopt a similar approach towards solving this problem. We consider
the set of real n X n symmetric positive definite matrices.

P={AER”|A=A", x'Ax>0, VxER"-{0}}.

This set is in fact the interior of the set of real n X n symmetric positive
semidefinite matrices, which is defined similarly except that x"Ax is constrained to
be non-negative rather than strictly positive. Another property to be noted, is that
a matrix A in P has a unique square-root in P which we shall denote by A",

We define a transformation L;: P— P, where § is an n X n invertible matrix.

The transformation is defined as
Ly(X)=SXxS".

The transformation can be easily shown to be one-one and onto. By varying S
over the set of n X n invertible matrices, we get a family of transformations which
we denote by G. Composition of transformations in G are given as follows

Lgo L (X)=STXT'S™
=L (X).

Also, the inverse of the transformation Lg is given as follows

L' (X)=57X(s™)"

=L S»x(X ) .
It can be shown that these transformations form a Lie group with respect to the
composition operation ‘c’. The identity of the Lie group is of course L, which
maps all positive definite matrices to themselves.
For any given matrix in P, there exists a unique transformation in G which

maps the matrix to identity or vice versa. So if you need to map a positive definite

matrix A to identity or the other way around then we need to use just the
transforms L 4112 or L 412 as
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LA—1/2(A) =]
and LA1/2(I) =A.

As in linear programming, we would like to define a centering transformation.
Since the constraints in the current problem are A, (M)=0, i=1,...,n. A
centering transform would be one that made all the eigenvalues of M equal.
Hence the centering transform would be one that mapped the current matrix M to
identity 1.

One can construct a Riemannian metric gij(x)' dx’ dx’ on the original space
which is invariant with respect to the family of transformations G. Once we define
the metric at identity the transformation L,,:» would give us a unique way of
extending it to all positive definite matrices M, since the derivative of the
transformation gives a linear map between the tangent space at / and the tangent
space at M. To define the distance between M and M + AM & P, we proceed as
follows.

We choose the transform to be L, where T= M "> which maps M to identity.
We then compute the image of M + AM under this transform

LM—IIZ(M) =]
Ly-12(M+AM)=1+AM’
where AM'= M~ Y> AMM™""* .

We choose to use the uniform spherical metric to define the distances at I.
Hence the distance can be written as

d*(I,1+AM') =2 2 Am]}
iJ
= tr(AM’ AM'T)
=tr(M™ " AMM T AMM™H'?)
=tr(AMM ™" AMM ™).

By requiring that that the distances be invariant with respect to the transforma-
tions in G we need that
d*(M, M + AM) = d*(L (M), L (M+AM))=d*(I,1+AM’)
=tr(AMM " AMM™) .,
Since only the diagonals of M are variable, AM is a diagonal and can be written

simply as

AM = 2 Azeel.

[ 2 i 4

Also, the Riemannian metric will be denoted as g,;(M) dz'dz’.
Hence the distance in the Riemannian metric would be given as follows



A CONTINUOUS METHOD FOR COMPUTING BOUNDS 235

g;(M)AZ' Az’ = tr(M™' AZM ™' AZ)

F i 4

=tr(M™! 2 Azee'M™' 2 Azjeje]?
i j
= 2 2 tr(M_le,-eiTM"lejef)Azi Az,
i

=2 ; (M 'e))’Az; Az, .
From this we conclude that
gij(M) = (el?Mﬂe}.)z .

In these formulae g,.(M) is a covariant symmetric tensor of degree 2. The
corresponding contravariant tensor is denoted by g”(M) and satisfies

gl]gjk=611c' )
If f: P— R is a C'-function defined on P, then its direction of descent d with
respect to the Riemannian metric is the contravariant vector obtained from the
gradient of f, which is a co-variant vector, by raising indices
. . Of
dl — 2 gl_[ —
i 8z;
In the present problem, the function to be optimized is given to be f(z) = e’z and
hence the descent direction can be obtained easily. If we were to follow the
descent directions infinitesimally, we would get a continuous trajectory which is
given by the differential equation
dz, i Of
= Y= 10
=285 (10)
Later, we shall given an alternate interpretation for this continuous trajectory.
Corresponding to the constraints in (7), we introduce a potential function [5],
[8], [9] which is invariant up to a constant with respect to the transformations in
G. 1t is given as

$(M) = —InTIA,(M)
= —In det(M) . (11)

The potential function is defined only for points that are in the interior of the
constrained region, i.e., A,(M)>0,i=1,..., n. We note that unlike the eigen-
values, the determinant of a matrix is a smooth function which can be expressed
as a polynomial in the components of the matrix [13], [14]. The potential
differences can be shown to be invariant with respect to the transformations in G
as follows.

Let L. be a transform in G and let A, BE P. Let A’ = L(A) = CAC” be the
image of A under the transform L. and similarly let B’ = CBC”. Then the
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difference in the values of the potential function at A’ and B’ can be given by
In det(A’) — Indet(B')

/(det(CAC)
‘“‘( det(CBC) )

_ ln( (detC)*det A )
(detC)*det B)
=lndet A—Indet B.

This demonstrates the invariance of potential differences under the transforma-
tions in G.

We shall now compute the partial derivatives of the potential function with
respect to the variables in z. In this context, we prove the following lemmas.

LEMMA 2. Let x=(x,,...,x,)ER™ and M(x) be a real symmetric positive-
definite matrix of size n X n whose elements depend on x. Let ¢(x) = —In det M(x)
and suppose for a pair of indices i and j
M M
B_x,-_B"and—éx_j_B"’
where B;, B,€ R"™" are symmetric matrices independent of x. Also, let tr(M)
denote the trace of the matrix M.
Then the first and second order derivatives of ¢(x) are given by

°¢ -1 op -1
ox, (M~ B), bx, =-—tr(M 'B,))
and
8 i
S er (M 'BMT'B).

g |
Proof. For very small € it can be shown that
det(] + eB) =1+ etr(B) + 0(¢%) .

We shall use this resuit later in the proof.

In order to differentiate with respect to x; we keep all variables except x;

constant. For analysis, let us use the notation M,(x;) for M(x) when all variables
except x; are unchanged.

_ 1 3

dx; det(M(x)) dx,

-1 y det(M,(x, + Ax;)) — det(M,(x,))

"~ det(M(x)) AinI—EO Ax

det (M(x))

i
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-1 . det(M,(x; + Ax,B;)—det(M,(x,))
~ det(M(x)) am0 Ax,

=1 det(M,(x,))(1+ Ax,tr(M 'B))) — det(M,(x,))
- det(M(x))Axl,.To Ax,

=—-tr(M™'B,).

Similarly, we can show that

8¢ _ 1
Se tr(M 'B)).

j
On differentiating MM ~' = I with respect to x; we get

oM ™! L M
o, M 5

J Jj

M'=-MT'BM™.

The result for the second order derivatives now follows easily as

% <8M“ )
dx,8x; r dx; B,

=M 'BM'B)). [ ]

LEMMA 3. Let h be the gradient and H be the Hessian of the potential function
&(z) in (11). Let the inverse of M(z) = Z — Q be denoted by M ™' = [r;] then

- _ B
hi=—-ryand Hy=r;, i,j=1,...,n.

Proof. Let e, be an n-dimensional vector whose ith coordinate is 1 and all other
coordinates are 0. Then we get the results,

WME) e, i=1,...,n
oz,
hence
h;= %%Z_) = _tr(M_leielT) =ry
and
3’0 (2) _ _
H; = 57 02 (M eelM ee])=r . |

i 7

It is clear from the above lemmas that g,; is in fact equal to H;.
It is obvious that minimizing the potential function corresponds to centering
with respect to the constraints. We shall now show that the curve defined in (10)
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and starting from the center has the property that for each value of the objective
function, the point on the curve minimizes the potential function for that
objective value. To prove this, let us consider the first order optimality condition
at the point that minimizes the potential function while keeping a linear objective
function ¢’z constant (where ¢ € R"). It is given by

3¢ _ 3(c’z) —

az, sz, i

H 1

where s is a scalar parameter.
On differentiating the above differential equation with respect to s and using
the chain rule, we get

s 2% 45
;. 0z,8z, ds :

But since we have already shown that (8%¢)/(3z, dz;) =g, the differential
equation becomes

dz.
g L=

., — =,
ij
; ds

13

and hence using (9) we get

dz; .

—d_s] = E:J g'c .
This is the same differential equation as given in (10) with f = c”z. This proves
that the points obtained from minimizing the potential function for different
values of the objective, form a curve which is identical to the continuous
trajectory defined in (10). In our present problem the objective is e’z and the
differential equation corresponding to the continuous trajectory can be obtained
by substituting ¢ by e.

This suggests a method for solving problem (8) by alternating between two
steps — a potential step in which we minimize the potential function ¢(z) and an
objective step in which we reduce the objective e’z.

We now propose our iterative approach for solving problem (8). We have to
start at a point in the interior of the region of optimization which means that the
initial values z of the vector z should be such that the matrix MY = Z2©® — Qis
positive-definite. One such value for 2'® can be obtained as follows. We compute
A (Q) and take p >, (Q). Set 2/¥ = pe. The matrix M can be shown to
be positive definite. Let z*) be the state of the z-vector at the kth iteration. We
define M® = Z% — 0.

As mentioned earlier, we shall alternate between the potential and the objec-
tive steps. In the potential step we try to minimize the potential function while
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keeping the value of the objective constant at its current value. The problem to be
solved in the potential step can be defined as follows,

min  ¢(z)
s.t. e’z=const.
AM)=0, i=1,...,n.

This is a constrained optimization problem and we shall solve it approximately as
follows.

Since z*) is an interior point, the potential function ¢(z) is defined for z*’ and
we can make a quadratic Taylor series approximation of ¢ “’(z) around z* which
is given by

(%) )

1
T(k)(Azp) =) +n" Az, + 3 Az;H Az, where Az, =z — z®
and h is the gradient and H is the Hessian of ¢(z) at z*.

The Hessian H and gradient h can be computed using Lemma 3.
To obtain the descent direction Az, that minimizes ¢(z), while maintaining the
objective value constant, we solve the problem
: (k)
min 7T""(Az,)
s.t. el Az,=0.
On applying the first-order Kuhn-Tucker optimality conditions, we get the
linear system
HAz, +h" = ae”
T -
e Az,=0.
We solve this linear system to obtain Az, which gives a new set of diagonals
k) — k)
z, =z tAz,.

After the potential step, we need to take a step that will improve the objective
e’z. As we have shown earlier, if Hy = [g,(Z E,k) — Q)] then the steepest direction
of descent with respect to the Riemannian metric is given by

-1
Az, =aH, e.

This gives us the direction for the objective step. Before determining the step
length, we must however ensure that after taking the step the resulting matrix M
continues to remain strictly positive definite. We can start with a value of « so that
the length of Az, in the Riemannian metric is given by || Az, ||, = n''* and then
halve it successively if necessary until the corresponding M becomes positive
definite. The method for adjusting alpha is outlined below.
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procedure adjust(e,d,z,Q,H)
{@-scaling factor,

d-descent direction,

z-state of z-vector,

H-Hessian of ¢(z) at z.}
Begin

12
1. Seta= (m) .
2. While ((Z - Q + aD) is not positive-definite) do
a=al2
endwhile

3. return (a/2)
End

Our algorithm for minimizing the bound f, ., on (1) can hence be described as
follows:

Algorithm
Begin
1. Compute maximum eigenvalue of Q and take p > A__ (Q)

2. Initialise z® = pe and K =0.
3. Define the potential function
(@) =Indet(Z - Q).

4. Repeat
begin loop
5. Construct
M(k) = Z(") -0
6. Compute Hessian H and gradient h for ¢(z) at z*
7. Solve
[ H —eT][Azp] _ [—hT]
-’ 0 Jle 0
8. zi,K) =z® 4 Az,
9. Compute new Hessian H' of ¢(z) at z;"’
10. Solve
H' Az,=e
11. call adjst(e,Az,,2",0,H")
12. %0 =2 1 o Az,
13. K=K+1
end loop

14. Until [z —2% V| <d

15. Return r(M®).
End
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3. Conclusion and Directions for Future Work

In this paper, we have addressed the problem of finding an upper bound in a
quadratic maximization problem with integer constraints. Combinatorial tech-
niques usually have a hard time on such problems. We had proposed a continuous
method for solving the problem [4]. We have extended our earlier approach [4] by
using techniques of differential geometry. Further computational experiments on
this method are underway. Extensions and improvements to this method as also
the complexity analysis of the technique is a subject of our current research. We
believe that this method would be useful in several related applications.
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