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Abstract. In the graph partitioning problem, as in other NP-hard problems, the problem of proving 
the existence of a cut of given size is easy and can be accomplished by exhibiting a solution with the 
correct value. On the other hand proving the non-existence of a cut better than a given value is very 
difficult. We consider the problem of maximizing a quadratic function xrQx where Q is an n × n real 
symmetric matrix with x an n-dimensional vector constrained to be an element of { -1 ,  1}". We had 
proposed a technique for obtaining upper bounds on solutions to the problem using a continuous 
approach in [4]. In this paper, we extend this method by using techniques of differential geometry. 
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O. Outline 

In the first section we introduce the quadratic optimization problem and give a 
motivation for the concepts underlying the development of the interior point 
approach for solving the problem. In the second section, we transform the 
problem into a continuous optimization problem. We also formulate a Rieman- 
nian metric defined on the feasible region of the optimization problem. We then 
describe a method of generating a sequence of decreasing upper bounds for the 
quadratic maximization problem. Conclusions and directions for future work are 
presented in the last section. 

1. Introduction 

Let S be the set of n-dimensional vectors defined as follows 

S={x=(x,,...,xn)lxi~{-1,1}, i = l , . . . , n } .  

Consider the quadratic optimization problem 

max f(x) 

s.t. x E S  

where f(x) = x rQx ,  Q E R "×" is a symmetric matrix. (1) 

Let fmax denote the maximum value of f(x) in problem (1). 
Since Q is a real symmetric matrix all its eigenvalues are real. If all the 

eigenvalues are negative the problem is easy [3], [11]. Otherwise problem (1) is 
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NP-hard [2] and obtaining an upper bound on fmax by finding the optimum 
solution to (1) is difficult. We consider only the NP-hard case in which at least 
one eigenvalue of Q is positive [12] and we shall present in this paper a technique 

for finding a good upper bound on fro,x" 
Evaluating f(x) at any x E S gives us a lower bound on the solution to this 

problem. However ,  to show that the optimal value of f(x) in S, can be no more 
than some real number  t~ using a combinatorial approach, one may have to 
evaluate f(x) for all x in S. In contrast we present here an efficient technique 
based on the interior point approach, for obtaining upper bounds on solutions to 
this maximization problem. 

The main concept in an interior point approach to such problems is to embed 
the discrete set (S in the current case) in a continuous set T where S C_ T. 
Maximum of a function f(x) over T gives an upper bound on f(x) in S. We would 
like to choose set T so that not only can the maximum be found in a computation- 
ally efficient manner  but also the bound obtained would be as good as possible. 

A commonly used approach is to choose the continuous set to be the box X 
defined as follows 

X={xER'~[-I<~xi<~I, i = l , . . . , n } .  

But optimizing a quadratic function f(x) over X is still NP-hard [12] so instead 
we enclose the box in a ball B where 

B = {x@ R n ] x r x ~  < n ) .  

For  maximizing f(x) on B, we need to just find the maximum eigenvalue Area x of 
Q. Then since 

x T Q x  
7- ~<'~ . . . .  V x ~ R  ~ - { ~ } ,  

x X 

xTQx <~ nAma x , VX @ B 

and therefore we get nAma x to be an upper bound on fmax" 
Instead of the ball B we may choose any ellipsoid E enclosing the box X and 

still retain the computational ease of the resulting maximization problem. In this 
paper  we shall limit ourselves to ellipsoids E(w) whose axes are along the 
coordinate axes. A technique for ellipsoids with some other  given set of axes can 
be derived along similar lines. 

Let U{w=(wl, wz , . . . ,wn)ER n ~ wi=l, wi>~O,i=l, . . . ,n) ,  
i=1 

and E(w) = {x ~ R n [ x~Wx ~< 1 where W = diag(w), w E U ) .  

It can easily be verified that the ellipsoid E encloses the box X. 
If h is the maximum eigenvalne of the matrix W-1/2QW -1/2 then 

xTQx yTW-1/2QW-I/2y 
= max = A (2) max xrWx y y ry  
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implying 

xrQx~<A,  V x E E ( w ) .  

This gives us a simple technique for maximizing f(x) on E(w). 
Since E(w) contains the set S, A is an upper bound on fmax" We also note that A 

is a function of the weights w. This suggests that the value of A may be reducible 
by suitably modifying the weights w. Hence to obtain a better bound on fmax, we 
need to find the right values for the weights w that minimize A. In the following 
section we shall use this idea to construct a method for computing better bounds 
OI1 fmax" 

2. Interior Point Approach to the Problem 

Our interior point approach to the problem is an iterative method which can be 
roughly described as follows. We start with some weights w (°)= 

0 (w o ' w2 o , . .  . , wn) ~ U and iteratively modify them, obtaining in the process a 
sequence of ellipsoids E (1), . . . , E (k) such that if ~(i) is maximum off(x)  over E (i) 
then 

/z(1) > / ~ ( 2 )  > . . .  > / z ( ~ )  . 

The condition tha t / z  is the maximum of f(x) over E(w) can be written as 

xTQx 
- - - < ~ ,  V x ~  R " -  {0} xTWx 

which can be rephrased as 

x r ( l ~ W  - Q ) x ~ > O ,  V x ~ R  n (3) 

implying that the matrix tt W -  Q is positive semidefinite. 
The problem to be solved can now be posed as 

min 

s.t. w ~ U  

xr( w Vx R n. (4) 

It can be proved that the level sets of the above optimization problem are convex. 
We shall now modify the problem space to simplify the minimization problem. 

Let V={d:(dl ,  d2 , . . . ,dn)~g n ~ di:O}.  
i=1 

L E M M A  1. Let  w E U and d E V, then given 

W = diag(w) and D = diag(d),  

xT(Q - D)x 
~<g ,  V x ~  R " -  {0) 

xrWx 

~ x r Q x ~ < 0 ,  V x E S .  (5) 
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Proof. Since V x E  S, x i E { - 1 ,  1}, i = 1 , . . .  , n, we have 

xTWx = ~] w~ = 1 

and since d E V we have 

x r D x =  ~ di = 0 .  

Hence  

xrQx<~tx, V x @ S .  

This suggests that we have an additional degree of f reedom in minimizing the 
bound fmax on S. So we may define the optimization problem over  (/z, w, d) 
space. But  before doing so let us consider the inequality (5) which is the only 
constraint that has both the w and d variables. This constraint may be rephrased 
as  

x T ( t z W  + D - - Q ) x > ~ O ,  V x E R  n . 

Let  us define for w C U and d E V 

M(Ix, w ,d)= lxW + D -  Q . 

For any given ( ~ , w , d ) ,  we can define ( ~ , w ' , d ' )  where w ' =  he and d ' =  
/ x w + d -  ~ e. 

It is obvious that w' E U and d' E V and that 

M i~, n-e,d' = ~ - I + I ~ W + D - - - I - Q n  n 

= w ,  d ) .  

Hence  it suffices to treat M as a function of only IX and d, keeping w constant at 
1 e and varying d iteratively to reduce the upper bound ! z. Bet ter  still we define a 
new vector z = /~ w + d. We note that erz  =/~ and the optimization problem gets 
simplified to the following 

min erz  

s.t. x r ( Z  - Q ) x ~ > 0 ,  V x @ R " ,  

where Z = diag(z). (6) 

Let  M = Z - Q. It is apparent from above, that the optimization has to be done 
over a region in which M is positive semidefinite. If we were to enforce the 
positive semidefiniteness condition for each x in R", it would require an infinite 
number  of inequalities. The same effect can be achieved by imposing conditions 

on eigenvalues of M. 
We shall use the notation Ai(M ) to denote the ith eigenvalue of a real 

symmetric matrix M. Since M is a real and symmetric matrix, it has n real 
eigenvalues Ai(M ), i = 1 . . . .  , n. For  M to be positive semi-definite, its eigen- 
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values must be non-negative which give us the inequality constraints 

Ai(M ) t > 0 ,  i = l , . . . , n .  (7) 

The optimization problem may now be finally stated as follows: 

min erz  

s.t. A~(M)/>O, i = l , . . . , n .  (8) 

RIEMANNIAN METRIC 

In the projective algorithm for linear programming, the optimization is done over 
a simplex and at each iteration of the method,  we bring the current interior point 
to the center  of the simplex by making a suitable projective transformation. 

We want to adopt  a similar approach towards solving this problem. We consider 
the set of  real n x n symmetric positive definite matrices. 

P = ( A ~ R n x n I A = A T ,  x r A x > 0 ,  V x E R " - { 0 ) } .  

This set is in fact the interior of the set of real n × n symmetric positive 
semidefinite matrices, which is defined similarly except that xrAx is constrained to 
be non-negative rather  than strictly positive. Another  property to be noted,  is that 
a matrix A in P has a unique square-root in P which we shall denote by A t/2. 

We define a transformation Ls:  P----~ P, where S is an n × n invertible matrix. 
The  transformation is defined as 

L s ( X )  = S X S  r .  

The transformation can be easily shown to be one-one and onto. By varying S 
over the set of n × n invertible matrices, we get a family of transformations which 
we denote  by G. Composit ion of transformations in G are given as follows 

L s o L r ( X  ) = STX TI"S  T 

= L s r ( X  ) . 

Also, the inverse of the transformation L s is given as follows 

Z s l ( S )  = S - I X ( s - X )  T 

= L s _ I ( X  ) . 

It can be shown that these transformations form a Lie group with respect to the 
composit ion operat ion 'o '. The identity of the Lie group is of course L r which 
maps all positive definite matrices to themselves. 

For  any given matrix in P, there exists a unique transformation in G which 
maps the matrix to identity or vice versa. So if you need to map a positive definite 
matrix A to identity or the other way around then we need to use just the 
transforms LA-1/z o r  ZAx/2 as  
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L A - I : 2 ( A  ) = I 

a n d  L z l : 2 ( I  ) = A .  

As in linear programming, we would like to define a centering transformation. 
Since the constraints in the current problem are Ai(M )>/0 ,  i =  1 , . . . ,  n. A 
centering transform would be one that made all the eigenvalues of M equal. 
Hence  the centering transform would be one that mapped the current matrix M to 
identity I. 

One can construct a Riemannian metric &/(x)  d x  i dx j on the original space 
which is invariant with respect to the family of transformations G. Once we define 
the metric at identity the transformation LMln  would give us a unique way of 
extending it to all positive definite matrices M, since the derivative of the 
transformation gives a linear map between the tangent space at I and the tangent 
space at M. To define the distance between M and M + AM E P, we proceed as 
follows. 

We choose the transform to be L r where T = M -1/2 which maps M to identity. 
We then compute  the image of  M + AM under this transform 

L M - , 2 ( M  ) = I 

LM- I :2 (M + A M )  = I + A M '  

where AM' = M -1/2 A M M  -I/2 . 

We choose to use the uniform spherical metric to define the distances at I. 
Hence  the distance can be written as 

de(I ,  I + A M ' ) =  ~] ~] hm'i 2 
i j 

= t r ( A M '  A M '  r)  

= t r ( M  -I/2 A M M  -~ A M M  -1/2) 

= t r ( A M M  -1 A M M  -1) . 

By requiring that that the distances be invariant with respect to the transforma- 
tions in G we need that 

d2(M,  M + A M )  = d 2 ( L r ( M )  , L r ( M  + A M ) )  = d2(I ,  I +  A M ' )  

= t r ( A M M  -1 A M M  -1)  . 

Since only the diagonals of M are variable, AM is a diagonal and can be written 
simply as 

AM = ~] Az,eie/T . 
i 

Also, the Riemannian metric will be denoted as gi: (M)  d z  i d z  i . 

Hence  the distance in the Riemannian metric would be given as follows 
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g q ( M ) A z  i Az  i = tr(M -1 A Z M  -1 AZ) 

tr(M-1 -1 = Az i e i e i M ~ Az/e]e r) 
i ] 

- 1  T - 1  T 
= ~ t r ( M  e i e iM eie y )Az  i A z  i 

i j 

: Z Z (e M%)2Azi azj . 
i j 

From this we conclude that 

g A M )  = (eTM-lej) 2 

In these formulae gq(M)  is a covariant symmetric tensor of degree 2. The 
corresponding contravariant tensor is denoted by gq(M) and satisfies 

gqgjk = 6~.  (9) 

If f :  P--> R is a c l - funct ion defined on P, then its direction of descent d with 
respect to the Riemannian metric is the contravariant vector obtained from the 
gradient of f ,  which is a co-variant vector, by raising indices 

• - ~ f  
d ~ = ~ g ~ J  gzj" 

In the present problem, the function to be optimized is given to be f(z) = erz and 
hence the descent direction can be obtained easily. If we were to follow the 
descent directions infinitesimally, we would get a continuous trajectory which is 
given by the differential equation 

dzi Z "" ~f  (10) 

Later,  we shall given an alternate interpretation for this continuous trajectory. 
Corresponding to the constraints in (7), we introduce a potential function [5], 

[8], [9] which is invariant up to a constant with respect to the transformations in 
G. It is given as 

th(M ) = - I n  IIA,(M) 

= - I n  de t (M) .  (11) 

The potential function is defined only for points that are in the interior of the 
constrained region, i.e., Ai(M ) > 0, i = 1 . . . . .  n. We note that unlike the eigen- 
values, the determinant of a matrix is a smooth function which can be expressed 
as a polynomial in the components of the matrix [13], [14]. The potential 
differences can be shown to be invariant with respect to the transformations in G 
as follows. 

Let L c be a transform in G and let A, B E P. Let A' = L c ( A  ) = C A C  r be the 
image of A under the transform L c and similarly let B ' =  CBC r. Then the 
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difference in the values of the potential function at A' and B'  can be given by 

In de t (A ' )  - In de t (B ' )  

= In ( (de t (C AC )  
det (CBC)  ] 

In( (detC)Zdet A ) 
\ (detC)Zdet B) / 

= In det A - In det B .  

This demonstrates the invariance of potential differences under the transforma- 
tions in G. 

We shall now compute the partial derivatives of the potential function with 
respect to the variables in z. In this context, we prove the following lemmas. 

L E M M A  2. Let x = (x 1 . . . . .  Xm) E R m and M(x) be a real symmetric positive- 
definite matrix o f  size n × n whose elements depend on x. Let ~b(x) = - In  det M(x) 
and suppose for a pair of  indices i and j 

8M 8M 
8x i = B ~ a n d ~ x j  = B J '  

where Bi,  Bj E R n×n are symmetric matrices independent of  x. Also, let tr(M) 
denote the trace o f  the matrix M. 

Then the first and second order derivatives of  4,(x) are given by 

and 

3¢ _ t r (M- '  Bi) fl--~-¢ = - t r (M-1Bi )  
8X i ' ~X] 

g2dP = t r (M-  1BiM-1Bi) . 
~X i 8Xj 

Proof. For very small e it can be shown that 

de t ( I  + EB) : 1 + Etr(B) + 0(e2).  

We shall use this result later in the proof. 
In order to differentiate with respect to x i we keep all variables except xi 

constant. For analysis, let us use the notation Mi(xi) for M(x) when all variables 
except x~ are unchanged. 

~¢ _ - 1  8 
det (M(x)) 

~x i det(M(x)) 8x i 

- 1  det(Mi(xi + Axi)) - det(Mi(x~)) 
- lim 

det(M(x)) ~-~o Ax~ 
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- 1 det (M i(x i + A x i B  i ) - d e t ( M i  ( X  i ) )  
det(M(x)) lim Axi--->O A X  i 

- 1  de t (Mi(x i ) ) (1  + Ax i t r (M-1Bi ) )  - de t (Mi (x i )  ) 
- det(M(x)) l imo A X  i 

= - t r ( M - 1 B i ) .  

Similarly, we can show that 

8qb = _ t r ( M _ l B i )  " 
8xj 

On differentiating M M  -1 = I with respect to xj we get 

8 M  -1 _ M _  1 8 M  M _  1 = - M - 1 B y M -  1 

The  result for the second order  derivatives now follows easily as 

8'dp _ tr(  S M - 1  Bi) 
8xi 8xj 8xj 

- 1  - 1  
= t r ( M  B i M  B i ) .  

L E M M A  3. Let  h be the gradient and  H be the Hessian o f  the potential  funct ion 
¢b(z) in (11). Let  the inverse o f  M(z) = Z - Q be denoted by M -I  = [rij ] then 

h i = - r i i  and  Hii = rE,  i, j = 1 . . . . .  n .  

Proof .  Let  e i be an n-dimensional vector whose ith coordinate is 1 and all other  
coordinates are 0. Then  we get the results, 

hence 

and 

8M(z) r 
--eie  i , i = l , . . . , n  

~z i 

5~b(z) = _ tr( M -  leie /T ) = - -  r ii 
h i -  8z i 

It is clear from the above lemmas that go is in fact equal to Hij. 
It is obvious that minimizing the potential function corresponds to centering 

with respect to the constraints. We shall now show that the curve defined in (10) 

--1 T --1 T 2 82¢(z) = tr (M eye iM e ie i )  = r i j .  • 
HiJ = 8z i 8zi 
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and starting from the center has the property that for each value of the objective 
function, the point on the curve minimizes the potential function for that 
objective value. To prove this, let us consider the first order  optimality condition 
at the point that minimizes the potential function while keeping a linear objective 
function crz  constant (where c E R " ) .  It is given by 

Oz i -- s ~z  i = SC i 

where s is a scalar parameter .  

On differentiating the above differential equation with respect to s and using 
the chain rule, we get 

g2(~ dz i 

j ~z/~zj ds = ci" 

But  since we have already shown that ( ~ 2 4 , ) / ( ~ z i 3 z j ) = g i j ,  the differential 
equation becomes 

dzj 
gii ~ = el 

] 

and hence using (9) we get 

dz__2 __ 
ds  ~ g~Jci. 

i 

This is the same differential equation as given in (10) with f =  cTz. This proves 
that the points obtained from minimizing the potential function for different 
values of the objective, form a curve which is identical to the continuous 
trajectory defined in (10). In our present problem the objective is erz  and the 
differential equation corresponding to the continuous trajectory can be obtained 
by substituting c by e. 

This suggests a method for solving problem (8) by alternating between two 
s t e p s -  a potential step in which we minimize the potential function ~b(z) and an 
objective step in which we reduce the objective erz. 

We now propose our  iterative approach for solving problem (8). We have to 
start at a point in the interior of the region of optimization which means that the 
initial values z (°) of the vector z should be such that the matrix M (°) = Z (°) - Q is 
positive-definite. One such value for z (°) can be obtained as follows. We compute 
Amax(Q) and t a ke / z  > Am,x(Q). Set z (°) =/xe .  The matrix M (°~ can be shown to 
be positive definite. Let  z (k) be the state of the z-vector at the kth iteration. We 
define M (k) = Z (k) - Q. 

As mentioned earlier, we shall alternate between the potential and the objec- 
tive steps. In the potential step we try to minimize the potential function while 
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keeping the value of the objective constant at its current value. The problem to be 
solved in the potential step can be defined as follows, 

rain ~b(z) 
s.t. eTz = const. 

Ai(M) >t O, i = l , . . . , n .  

This is a constrained optimization problem and we shall solve it approximately as 
follows. 

Since z (k) is an interior point, the potential function ¢(z) is defined for z (k) and 
we can make a quadratic Taylor series approximation of th(g)(z) around z (k) which 
is given by 

1 AzTH AZp where Azp --- z - z (k) T(~)(Azp) = ~b(z (k)) + h r AZp + 

and h is the gradient and H is the Hessian of th(z ) at z (k). 

The Hessian H and gradient h can be computed using Lemma 3. 
To obtain the descent direction Azp that minimizes d~(z), while maintaining the 

objective value constant, we solve the problem 

min T(k)(Azp) 

s.t. e r A z p = 0 .  

On applying the first-order Kuhn-Tucker  optimality conditions, we get the 
linear system 

H AZp + h r = ae  r 

er  Azp = 0.  

We solve this linear system to obtain Azp which gives a new set of diagonals 

z(k) : z(k) _]_ AZp p 

After  the potential step, we need to take a step that will improve the objective 
erz. As we have shown earlier, if H 0 = [ g i j ( Z ~  ) - Q)] then the steepest direction 
of descent with respect to the Riemannian metric is given by 

Az 0 = t~Hole .  

This gives us the direction for the objective step. Before determining the step 
length, we must however ensure that after taking the step the resulting matrix M 
continues to remain strictly positive definite. We can start with a value of o~ so that 
the length of Az 0 in the Riemannian metric is given by II Az0 IIR -- n 1'2 and then 
halve it successively if necessary until the corresponding M becomes positive 
definite. The method for adjusting alpha is outlined below. 
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procedure adjust( a ,d ,z ,  Q ,H ) 
{a-scaling factor, 
d-descent direction, 
z-state of z-vector, 
H-Hessian of ~b(z) at z.} 

Begin 

1. 

2. 

3. 

End 

/1 ~1/2 
Set a = \d- -T~ ] . 

While ((Z - Q + a D  ) is not positive-definite) do 

a = t~/2 

endwhile 

return ( a /2 )  

O u r  a l g o r i t h m  f o r  m i n i m i z i n g  t h e  b o u n d  fmax o n  (1 )  c a n  h e n c e  b e  d e s c r i b e d  as  

f o l l o w s :  

Algorithm 
Begin 

1. Compute maximum eigenvalue of Q and take/z  > Ama~(Q) 

2. Initialise z (°) = /xe  and K = 0. 

3. Define the potential function 

Oh(z) = In det(Z - Q ) .  

4. Repeat 
begin loop 

5. Construct 

M @) = Z @) _ Q 

6. Compute Hessian H and gradient h for ~b(z) at z (r) 

7. Solve 

[ - 
- e  r 0 JL a J 

8. z~ r) ----- z (r) + Azp 

9. Compute new Hessian H '  of 4~(z) at %-(r) 

10. Solve 

H '  AZ o = e 

11. call adjst(t~,AZo,Z~r),Q,H ') 

12. Z (K+I) = Z(p k) "~ O/ AZ 0 

13. K = K + I  
end loop 

14. Until IIz <K) - z  (r-l) II < ~  

15. Return tr(M(k)). 
End 
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3. Conclusion and Directions for Future Work 

In this paper, we have addressed the problem of finding an upper bound in a 
quadratic maximization problem with integer constraints. Combinatorial tech- 
niques usually have a hard time on such problems. We had proposed a continuous 
method for solving the problem [4]. We have extended our earlier approach [4] by 
using techniques of differential geometry. Further computational experiments on 
this method are underway. Extensions and improvements to this method as also 
the complexity analysis of the technique is a subject of our current research. We 
believe that this method would be useful in several related applications. 
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